sábado, 31 de diciembre de 2011

Los números de 2011

Los duendes de las estadísticas de WordPress.com prepararon un reporte para el año 2011 de este blog.

Aqui es un extracto
El Museo del Louvre tiene 8.5 millones de visitantes por año. Este blog fue visto cerca de 140.000 veces en 2011. Si fuese una exposición en el Museo del Louvre, se precisarían alrededor de 6 días para que toda esa gente la visitase.

Haz click para ver el reporte completo.

jueves, 1 de diciembre de 2011

Cámara de niebla de expansión

Se que este tema esta en muchas páginas, pero es una linda prueba que requiere de muy pocas cosas y permite visualizar las trayectorias de las partículas de alta velocidad, en este caso radiación alfa de una placa de americio.

Teoría

Este ingenioso dispositivo desarrollado por Charles Wilson,  físico escoses que por este trabajo recibió el premio novel en 1927, permite ver las trayectorias de las partículas ionizantes.
Se trata de un recinto cerrado donde hay vapor súper enfriado que al ser atravesado por una partícula ionizante produce una ionización del vapor produciendo pequeñas gotas que forman la niebla, así al paso de la partícula queda una estela marcando su trayectoria, como si fuera un avión de línea que deja a su paso la estela característica.
Este aparato resultó ser una herramienta muy buena para el estudio de partículas alta energía.

Construcción del dispositivo
Hay dos formas posibles de hacerlo a nivel casero, una es usando hielo seco para súper enfriar el vapor y otra por descompresión brusca del recinto mismo de la cámara, como el conseguir hielo seco es  bastante difícil en algunos casos he optado por construir una que funcione con la descompresión, para ello me he basado en un modelo realizado por un colaborador de nuestro club de ciencias, David Flores un experto en reproducción de aparatos físicos y un artista en los diseños, recomiendo visitar su web donde podrá ver su modelo http://sites.google.com/site/electricalia/503 también ha colaborado con David un prestigioso participante del foro de científicos aficionados Homer.

Como es la cámara de niebla por descompresión

El diagrama muestra las partes de la misma.

diag

Para construir el prototipo he usado un frasco de dulce de unos 125 cc, una linterna china económica, una jeringa de unos 60 cc y la parte electrónica la he recuperado de una lámpara de bajo consumo quemada

El modelo terminado

Ahora algunos detalles de la construcción:

IMG_3818 (Medium)

El interior de la base, se ve el rectificador de onda completa con su salida polarizada y también puede observarse el caño plástico que va conectado a la jeringa, para hacer la compresión primero y luego descomprimir bruscamente

IMG_3821 (Medium)

Los dos electrodos que “borran” el superior en forma de aro (positivo), hecho de alambre de cobre y el inferior es una arandela de hierro, como sellé con silicona el ácido acético del pegamento la daño, la entrada y salida de aire esta cubierta con un trozo de tela de trama amplia, eso evita bastante las turbulencias y las trazas se ven mas rectas.

IMG_3822 (Medium)

Acá he montado una base negra sobre la arandela y la cápsula plástica tiene en su interior la placa de americio, sacado de un detector de humo, es un potente emisor alfa

IMG_3820 (Medium) 

Detalle  del emisor de alfas

La fuente es un simple rectificador de onda completa

fuente

Algunas recomendaciones

El recinto debe quedar perfectamente estanco, (no se debe escapar aire).
El funcionamiento es el siguiente:

Se colocan 1 o 2 cm de alcohol puro en el interior del recinto, presionamos la jeringa y  nos daremos cuenta que esta hermético porque esta se volverá sola.  Presionamos la jeringa hasta el fondo manteniendo presionado unos segundos, luego se saca rápidamente el émbolo, en ese momento veremos las trayectorias de las alfa de alta energía del americio.
La violenta descompresión enfría el vapor que al ser cruzado por las partículas condensa pequeñas gotas que formará la estela característica.
Con este sencillo aparato he podido ver solamente partículas alfa de alta energía del americio, las cámaras de niebla profesionales permiten visualizar alfas betas positrones electrones y una variedad de partículas cósmicas.

Un video mostrando el funcionamiento





domingo, 20 de noviembre de 2011

Pinza para precintos de frasco ampolla

Esto probablemente no le va a ser útil a muchos, pero tal vez a alguno que trabaje en bacteriología le venga bien.

Tomé un trabajo en el laboratorio  para el que tuve que preparar una buena cantidad de medios de cultivo líquidos y se me presentó el problema de de cerrar los frascos al estilo vial de penicilina, se podía hacer manualmente pero no quedaban lo bien que a mi me gusta y por ahí cuando ponía en el autoclave la misma presión interna del líquido hacia que la tapa se salga.

Pedí la cotización de una pinza comercial y lo que podía ganar en el trabajo se me iba para pagar la herramienta y tenía que poner unos pesos mas todavía, así que me dispuse hacerla, basándome en una comercial

Busque en el desguace unos caños de hierro un eje solido y empecé la tarea

IMG_3794 [800x600]

IMG_3795 [800x600]

IMG_3797 [800x600]

IMG_3798 [800x600]

IMG_3799 [800x600]

IMG_3800 [800x600]

IMG_3801 [800x600]

IMG_3802 [800x600]

IMG_3803 [800x600]

El modelo terminado (sin pintar) equipado de una vieja pinza que se había roto y que como compulsivo juntamugre había guardado

Un esquema de como trabaja



El video de como trabaja






martes, 15 de noviembre de 2011

Levitación por diamagnetismo

Estos días he recibido un envío del PFDC de científicos aficionados, unos obsequios de esos que yo valoro mucho, entre otras cosas venían algunas plaquitas de grafito pirolítico, este tipo de material es altamente diamagnético, es decir cualquiera de los polos de un imán causa repulsión en el material, tanto es así que puesto sobre un campo lo suficiente poderoso es capaz de mantenerse levitando, no se necesita nada mas que los imanes y este material que a diferencia del grafito común, el de las minas de lápiz, tiene una estructura muy ordenada, se obtiene por el depósito químico en fase de vapor de metano, acetileno, etileno u otros hidrocarburos gaseosos sobre un sustrato, se puede conseguir en ebay http://www.ebay.com/itm/Pyrolytic-Graphite-4-NdFeB-Rare-Earth-Magnets-Levitate-/230699917280?pt=LH_DefaultDomain_0&hash=item35b6c95fe0 

Para la prueba he usado unos pequeños imanes de neodimio de 7 mm de diámetro por 3mm de alto formando una figura como la de la fotografía

 IMG_3787

Las placas son estas

IMG_3789

Se pone con delicadeza sobre la formación de imanes

IMG_3792

En la imagen puede verse como queda flotando sobre los imanes.





jueves, 3 de noviembre de 2011

La tormenta eléctrica dentro de una botella

Motivado por una discusión en el foro de científicos aficionados, http://www.cientificosaficionados.com/foros/viewtopic.php?f=7&t=13765 estuve haciendo algunas experiencias con el generador de Van Der Graaff, la idea era poder registrar chispas lo mas largas y brillantes posibles, en un momento se me ocurrió colocar una botella plástica con agua directamente sobre la esfera (En mi caso parece un huevo mas que una esfera ya que es un viejo sifón de acero inoxidable), la experiencia es muy buena, agrego fotografías y un video, me dejó asombrado el experimento.

botella 5 

botella2

botella4

botella 3 

Una vez terminada la experiencia descargar el VGD y Ojo!!!! Cuidado!!!!! la botella con el agua es un condensador que lleva cargas acumuladas y da descargas bastante respetables.

El video





domingo, 23 de octubre de 2011

Un foro para el blog

Hola, muchas veces me han pedido que agregue un sitio donde poder plantear dudas sobre los trabajos y nuevas propuestas, bien he creado un foro gratuito (va a haber publicidades, lo siento) en el que podrán abrir hilos y tendrán la posibilidad de ser asesorados por varios docentes que han participado últimamente en un congreso de Física que se realiza en mi país en el que tuve el privilegio de disertar, invitado por la Facultad de Ciencias Físicas y Naturales de la Universidad de Córdoba (Argentina)
Los invito a registrarse, proponer temas, y participar de los hilos, el link es el siguiente:
Foro de Ciencias Naturales

sábado, 8 de octubre de 2011

Diez pruebas con magnetismo

 

Siguiendo la serie diez pruebas con… esta vez vamos con el magnetismo, he tratado de elegir pruebas sencilla y llamativas para que se puedan reproducir en cualquier aula.

Para hacer estos experimentos necesitaremos imanes que podremos obtener de parlantes o altavoces son del tipo cerámicos, también podemos conseguir en los magnetrones de los microondas hermosos y potentes imanes toroidales y otros imanes distintos de mucha potencia que sacaremos de discos duros rotos, son imanes de neodimio, en las imágenes esta señalado donde sacarlos.

clip_image002

También necesitaremos, una brújula, alambre esmaltado fino, leds, algunas pilas, hay algunas pruebas que requieren una fuente de alimentación variable.

clip_image004

Un poco de teoría:

Que es el magnetismo?

Es un fenómeno físico por el que los materiales ejercen fuerzas de atracción o repulsión sobre otros materiales Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influídos, de mayor o menor forma, por la presencia de un campo magnético. El hecho es que en estos materiales llamados imanes los electrones de los átomos están ordenados en la misma dirección creando la fuerza magnética.

Los imanes tienen dos polos que son inseparables, no podemos aislar un polo, si partimos un imán cada parte del mismo tendrá su polo norte y sur.

La tierra en si, al tener un núcleo de hierro girando en su interior se comporta como un imán gigante, si suspendemos con un hilo un imán se orientará siempre en la misma forma, esto es una brújula, el polo norte de la brújula indica el norte de ese gran imán.

Así podremos saber también los polos de nuestros imanes, el polo norte de la brújula indicará el norte del imán que acercamos.

Prueba Nro 1 Los campos magnéticos.

En la región que rodea a un imán o a una bobina recorrida por una corriente eléctrica, existe un campo magnético que puede ser representado por líneas de flujo magnético, estas líneas no tienen origen ni punto final, existen en lazos cerrados.

Para visualizarlas usaremos una caja transparente de CD a la que le agregaremos limadura de hierro (Conviene pasar esa viruta de hierro por un colador para que quede bien fina y homogenea)

clip_image006

Distintos campos según la forma del imán

clip_image008

Campo de un imán en barra

clip_image010

Imán toroidal

Si disponemos de una brújula, al acercarla veremos como se desvía colocándose en dirección de las líneas del campo.

Prueba Nro 2 El tubo embrujado

Necesitaremos un tubo de cobre de alrededor de 60 o 70 cm y 2 cm de diámetro y un imán de neodimio que sacamos de un viejo disco duro de PC.

Dejamos caer el imán por el tubo y Ohhhhh!!!!! Va como flotando!!!!!…. Parece que ahí no corren los 9,81 m/s2 de la gravedad

Podemos probar con otros materiales que no sean el imán y veremos que si obedecen las leyes de la gravedad, pero como es esto? Si el imán no atrae al cobre?

clip_image012

Explicación:

En  la figura, se ilustra la aplicación de la ley de Lenz para explicar el origen de la fuerza retardadora sobre el imán en términos de las corrientes inducidas en el tubo de metal.

clip_image013

  1. Durante el descenso del imán, el flujo del campo magnético se incrementa en la región próxima al polo Sur del imán. Se origina en el tubo una corriente inducida que se opone al incremento de flujo, en el sentido indicado en la parte (1) de la  figura.
  2. El flujo del campo magnético disminuye en la región próxima al polo Norte, se origina en el tubo una corriente inducida que se opone a la disminución del flujo, en el sentido indicado en la parte (1) de la figura

El momento magnético del imán y el de las corrientes inducidas está representado en la parte (2) de la figura.

clip_image014

En la figura (3), mostramos la equivalencia entre corrientes (espiras o solenoides) e imanes, de modo que la corriente inducida por delante del polo Norte equivale a un imán de polaridad opuesta, por lo que se repelen. Sin embargo, la corriente inducida por detrás del imán tiene la misma polaridad por lo que se atraen.

El imán que desciende por el tubo metálico es repelido por delante y atraído por detrás. Esta es la explicación cualitativa de la fuerza de frenado en términos de la ley de Lenz.

Tomado de: http://www.sc.ehu.es/sbweb/fisica/elecmagnet/induccion/foucault1/foucault1.htm

Prueba Nro 3 Levitación

Es conocida la fuerza que ejercen dos imanes cuando se enfrentan con polos opuestos, del mismo modo cuando se enfrentan por sus polos iguales, en este caso tratando de separarse, resulta muy atractivo ver como un imán queda en el aire empujado por esa repulsión, para esta prueba vamos a usar los imanes toroidales, los colocamos en una caja de CD de las redondas





 

Prueba Nro 4 Simple motor de corriente continua

Para esta prueba necesitaremos, fabricar una bobina de unas 10-15 vueltas de cable de un solo hilo forrado, de un diámetro de unos 6 a 8 cm podemos sujetarla con trozos de cinta para que quede armada, los dos extremos deben quedar bien ecuatoriales para que la misma pueda girar, uno de los dos extremos tiene que quedar pelado solo en la mitad del cable. También necesitamos 2 clips un imán y tres pilas

IMG_3723

IMG_3724

clip_image002[5]

Un suave impulso y voilá!!! Sale funcionando





 

Prueba Nro5 El rifle de Gauss

El principio de acción y reacción puesto a la vista con este interesante dispositivo magnético, se necesitan 5 o 6 bolitas de acero y dos o tres imanes de neodimio del tipo cilíndricos

clip_image004[5]





 

Prueba Nro 6 La linterna mágica

En este experimento pondremos a la la vista la ley de Faraday-Lenz, que nos dice que por por el movimiento del imán permanente en el interior de una bobina se crea sobre esta una corriente eléctrica que a su vez genera un campo magnético opuesto al campo del imán. (recordar lo visto en la prueba 2 donde ese campo opuesto frenaba la caída del imán en el tubo de cobre que hace las veces de bobina)

Necesitaremos un carretel de hilo de coser y alambre de cobre esmaltado fino 0.2 mm de diámetro o menor, podremos sacarlo de algún transformador que desarmemos. También nos hará falta un led (los leds son diodos de emisión luminosa en casi todos los dispositivos electrónicos hay, son las luces que indican si el dispositivo esta conectado a la red de 220v)

Se bobinan en este carretel el mayor número de vueltas que entren en el mismo (500 o más), dejaremos a mano ambos extremos de la misma, esta misma bobina la usaremos en otra prueba.

Usaremos un tornillo que entre justo en el carretel al que le pegaremos en la cabeza unos imanes de neodimio, el led conectado a los extremos de la bobina, entramos y sacamos el tornillo en la bobina y “se hizo la luz”, veremos como se enciende el diodo

clip_image006[5]





Una pregunta que conviene hacer a la clase es de donde sale la energía en este caso?

 

Prueba Nro 7 La balanza electromagnética

Utilizando la misma bobina que construimos para la linterna mágica vamos a fabricar un electroimán que nos servirá como mecanismo para pesar objetos.

En el dibujo queda claro que la fuerza del electroimán cuando sea alimentado por una tensión suficiente moverá la varilla de hierro asociada al platillo, se puede colocar un indicador visual entre el tope inferior y la varilla para que encienda un led cuando esto ocurre. Para la pesada tendremos que realizar una calibración con pesas conocidas y dibujar una curva como la que adjunto.

Ampliaré este trabajo en breve asociando el conjunto a la placa arduino para que haga lectura directa

clip_image002[7]

tabla balanza

Como puede verse en DataStudio, da una función cuadrática, en X van los gramos y en Y los voltios que necesitamos, los datos de la gráfica los tomé con monedas de 10c que pesan cada una 2.21 gr c/u

IMG_3756

Algunos consejos para que esto salga bien, el punto de apoyo de la palanca si es posible hacerlo tipo cuchilla, el electroimán debe estar lo mas cerca posible de la barra y también poner un indicador óptico para marcar perfectamente el punto en que se vence el peso del platillo, luego quedará pegado por mas que se baje la tensión un poco.

Un video





 

 

Prueba Nro 8 Un pequeño aerogenerador demostrativo

En la prueba 4 vimos como fabricar un motor muy simple el que funcionaba cuando le dábamos tensión con las pilas, en este caso vamos a hacer a la inversa, con un pequeño motor de algún juguete vamos a generar tensión suficiente para encender un led, en este caso la bobina del motor irá conectada a la luminaria y moveremos el imán del motor.

Utilizaremos una especie de hélice que pueda ser movida por el viento, la fabricaremos con cucharas dosificadoras de las que vienen en la leche en polvo.

clip_image004[7]

IMG_3747

IMG_3748

Este mismo dispositivo puede usarse como anemómetro, colocando un voltímetro en lugar del led, para ajustarlo habrá que hacer unos ejes cartesianos, voltios en función de velocidad, sacando el dispositivo por la ventanilla del auto a velocidades conocidas y anotando los voltios en cada caso. También con arduino se puede hacer una lectura directa además de marcar las ráfagas de máxima.

Prueba Nro 9 Diamagnetismo

Como se comentó al inicio todos los materiales son afectados por los campos magnéticos, algunos materiales son repelidos por los campos magnéticos, a ellos se les llama diamagnéticos, entre ellos tenemos al bismuto, al carbono pirolítico que hasta puede flotar sobre un campo fuerte como el de imanes de neodimio

 

Esta imagen fue tomada de wikipedia http://es.wikipedia.org/wiki/Diamagnetismo

Hay varios materiales que son diamagnéticos además de los mencionados, el oro y el cobre por ejemplo, vamos a fabricar con una pajita de gaseosa una especie de balanza de torsión

IMG_3762

Equilibramos con dos anillos, uno de oro y uno de cobre, deberemos esperar que deje de girar, ya que el hilo esta formado por varias fibras trenzadas y tardara un rato en dejar de hacerlo hacia un lado, una ves se estabilizó vamos a acercar el imán de neodimio a 1 o 2 mm de alguno de los anillos y notaremos como este intenta alejarse del imán, es una fuerza muy sutil, haré un video en cuanto reciba unas agujas de bismuto que es el material mas diamagnético que hay.

Prueba Nro 10 El Chispaboli

Este dispositivo fue inventado por Edison para grabar metales, una especie de bolígrafo para escribir en cobre, bronce o estaño.

Es un electroimán que cierra su circuito con un tornillo de punta afilada que esta sujeto en una chapa de bronce flexible (papel España). El siguiente dibujo ilustra bien

clip_image002[9]

El arco que se forma entre la punta del tornillo y el material a grabar es lo que permitirá escribir sobre el metal, la técnica es bastante fácil, no hay que apretar, una vez se forma el arco lo mantenemos lo suficiente cerca como para que no se corte la chispa y escribimos.

El electroimán puede fabricarse bobinando sobre un tornillo de unos 5 cm de largo y unos 6 mm de diámetro unos 10 metros de alambre de cobre esmaltado de 0.40 mm, yo usé una bobina de un relay de 12 v

IMG_3759





domingo, 31 de julio de 2011

Afinando la guitarra con la barrera óptica.

 

Aprovechando la barrera óptica que armé para medir la velocidad de la flecha, sin muchas variantes podemos hacer una buena prueba midiendo la frecuencia de resonancia de las cuerdas de una guitarra.

clip_image002

De nuevo quiero aclarar que estos trabajos son didácticos, para aplicar conceptos y verificar en la práctica fenómenos físicos, estimulan y entusiasman, seguramente muchos me dirán que con un micrófono y un osciloscopio pueden medir también la resonancia y es correcto.

Colocar el láser se ponía incómodo, por eso decidí usar los diodos emisores de infrarrojo que saque de la placa del Mouse, los transparentes, la ventaja que tienen es que son bien planos y se pueden fijar a una superficie que se desplaza por debajo de las cuerda. El receptor es el mismo de la prueba con la flecha

clip_image004

El terminal mas bajo en el interior del plástico es el positivo, como acá puede verse tiene una lente para concentrar los rayos infrarrojos

clip_image006

El código para el arduino también es el mismo que usamos antes.

Con un soporte ponemos por debajo de la cuerda el led infrarrojo y por encima el receptor

clip_image008

El led esta fijo con cinta tipo Scotch, observe que la parte donde está la lente va hacia arriba

clip_image010

Aca el dispositivo montado.

Los led infrarrojos estimulan muy bien al sensor aunque estén a bastante distancia (5 o 6 cm)

Una vez montado y puesto en marcha el arduino, vamos a grabar el archivo con los datos en RealTerm, como comenté en trabajo de medición de velocidad de una flecha.

Se va a Port, elegir 115200 baudios y Com3, dar Change

Deben aparecer en la pantalla negra del programa las dos columnas de datos, los milisegundos y la intensidad de la señal que recibe el sensor.

Se ajusta moviendo el led hasta obtener la mayor lectura posible, una vez hecho esto se corre hasta dejarlo exactamente por debajo de cuerda que se va a medir.

Ahora vamos a Capture en RealTerm y le damos un nombre al archivo, por ejemplo Quinta y activamos con Start: Overwrite. Hacemos sonar la cuerda elegida y cerramos el cuadro de dialogo con Stop Capture.

Bien ya tenemos el archivo de datos y lo visualizamos con Kst2, Se abre Data Wizard, se busca el archivo que obtuvimos con RealTerm, “Quinta”, vamos a Configure… allí desmarcamos Read field names from lines, y elegimos Space/tab delimited, damos Ok y next, aparecen 2 columnas, pasamos la columna 2 a la derecha y next, , siguientes dos pantallas, next y finish, Para los que aún no tienen el arduino y quieren ir familiarizándose con el soft, dejo un archivo de datos con las ondas de la Quinta cuerda (La misma de las fotos de este documento), pueden bajarlo de acá, para ir practicando.

Si todo fue bien debemos obtener una gráfica como esta:

clip_image012

Con el mouse seleccionamos una zona, puede ser cualquiera

clip_image014

De esta manera podemos ir agrandando la secuencia de ondas hasta el tamaño que creamos conveniente y que nos permita medir cuantos ciclos hay por ejemplo en 20 milisegundos

clip_image016

Como puede apreciarse cada 20 mSeg hay 1.5 ciclos, (fijarse entre los 66840 y 66860 mSeg ), con este dato podemos calcular que esa cuerda resuena a 75 ciclos por segundo o sea 75 Hz.

A mi guitarra la he afinado yo, que no tengo oído ni para tocar el timbre, está mal afinada, ya que esa frecuencia podría bien corresponder a la sexta cuerda.

Los valores que encontré para una guitarra afinada son los siguientes:

Cuerda

Frecuencia en Hz

Primera

329

Segunda

247

Tercera

196

Cuarta

146

Quinta

110

Sexta

82

Alguno con más habilidad para programar arduino puede hacer que éste calcule la frecuencia y la muestre en el monitor o un display transformando el dispositivo en un afinador de guitarras electrónico

La gráfica que se obtiene de las cuerdas corresponde a la de una onda atenuada, tipo de gráfica que también se da con un fleje elástico sujeto a un extremo, es otra de las variantes en que se puede usar el dispositivo.